Connections for Sets and Functions

Invited Lecture given at ISS-98
Amsterdam, April 21st, 1998

Jean SERRA
Ecole des Mines de Paris
Connectivity in Mathematics

- **Topological Connectivity**: Given a topological space E, set $A \subseteq E$ is connected if one cannot partition it into two non-empty closed sets.

- **A Basic Theorem**: If $\{A_i\}_{i \in I}$ is a family of connected sets, then

 \[
 \bigcap_{i} A_i \neq \emptyset \implies \bigcup_{i} A_i \text{ connected}
 \]

- **Arcwise Connectivity** (more practical for $E = \mathbb{R}^n$): A is arcwise connected if there exists, for each pair $a, b \in A$, a continuous mapping ψ such that

 \[\alpha, \beta \in \mathbb{R} \quad \text{and} \quad f(\alpha) = a \; ; \; f(\beta) = b\]

 This second definition is more restrictive. However, for the open sets of \mathbb{R}^n, both definitions are equivalent.
Criticisms

Is topological connectivity adapted to Image Analysis?

• Digital versions of arcwise connectivity are extensively used:
 – in 2-D: 4- and 8- connectivities (square), or 6- one (Hexagon);
 – in 3-D: 6-, 12-, 26- ones (cube) and 12- one (cube-octaedron).

However:

• Planar sectioning (3-D objects) as well as sampling (sequences) tend to disconnect objects and trajectories, and topological connectivity does help so much for reconnecting them;

• More generally, in Image Analysis, a convenient definition should be operating, i.e. should introduce specific operations;

• Finally, the topological definition is purely set oriented, although it would be nice to express also connectivity for functions...
Lattices and Sup-generators

- A common feature to sets $\mathcal{P}(E)$ (E an arbitrary space) and to functions $f: E \rightarrow T$ (T, grey axis) is that both form complete lattice that are «well» sup-generated.

- A **complete lattice** \mathcal{L} is a partly ordered set where every family $\{a_i\} i \in I$ of elements admits
 - a smaller upper bound $\vee a_i$, and a larger lower bound $\wedge a_i$.

- A family \mathcal{B} in \mathcal{L} constitutes a **sup-generating** class when each $a \in \mathcal{L}$ may be written $a = \vee \{b ; b \in \mathcal{B} , b \leq a \}$.

- In $\mathcal{P}(E)$ - \vee and \wedge operations become union and intersection;
 - the elements of E, *i.e.* the points, are sup-generators.
In order to avoid the continuous/digital distinction, the real lines \mathbb{R} and \mathbb{Z}, or any of their compact subsets, are all denoted by T. Axis T is a totally ordered lattice, of extreme elements 0 and m.

• The class of functions $f : E \to T$, E an arbitrary space, forms a totally distributive lattice, denoted by T^E, for the product ordering $f \leq g$ iff $f(x) \leq g(x)$ for all $x \in E$.

In this lattice, the so called numerical \lor and \land are defined by:

\[(\lor f_i)(x) = \lor f_i(x) \text{ and } (\land f_i)(x) = \land f_i(x) \quad x \in E.\]

• Moreover, in T^E the pulses functions:

\[k_{x,t}(y) = t \text{ when } x = y ; \quad k_{x,t}(y) = 0 \text{ when } x \neq y,\]

are sup-generating, i.e. every function f is written as

\[f = \lor \{ k_{x,t} \ , \ x \in E, \ t \leq f(x) \} .\]
• **Reminder**: A **Partition** of space E is a mapping \(D: E \rightarrow \mathcal{P}(E) \) such that

\[
\begin{align*}
(i) & \quad \forall x \in E, \quad x \in D(x) \\
(ii) & \quad \forall (x, y) \in E, \\
\text{either} & \quad D(x) = D(y) \\
\text{or} & \quad D(x) \cap D(y) = \emptyset
\end{align*}
\]

• The partitions of E form a **lattice** \(\mathcal{D} \) for the ordering in which \(D \leq D' \) when each class of \(D \) is included in a class of \(D' \). The largest element of \(\mathcal{D} \) is E itself, and the smallest one is the pulverization of E into all its points.

The sup of the two types of cells is the pentagon where their boundaries coincide. The inf, simpler, is obtained by intersecting the cells.
Connections on a Lattice

Since the basic property of topological connectivity involves set \cup and \cap only, we can forget all about topology and take the basic property, expressed in the lattice framework, as a starting point.

Connection: Let L be a complete lattice. A class $C \subseteq L$ defines a connection on L when

(i) $0 \in C$;

(ii) C is sup-generating ;

(iii) C is conditionally closed under supremum, *i.e.*

$$h_i \in C \text{ and } \bigwedge h_i \neq 0 \implies \bigvee h_i \in C .$$

• In particular, points belong to all possible connections on $P(E)$ and pulses to all connections on functions T^E. Thus they are said to constitute canonic families S.
• **Connected opening**: Let \(C \) be a connection on lattice \(\mathcal{L} \) of canonic family \(S \). For every \(s \in S \), the operation \(\gamma_s : \mathcal{L} \to \mathcal{L} \) defined by

\[
\gamma_s (f) = \bigvee (p \in C , s \leq p \leq f) \quad f \in \mathcal{L} ,
\]

is an *opening*:

- of (point, pulse) marker \(s \)
- and of invariant sets \(\{p \in C, s \leq p\} \cup \{0\} \).

Moreover, when \(r \leq s \), with \(r,s \in S \), then \(\gamma_r \geq \gamma_s \).

• *N.B.* Operation \(\gamma_s \) belongs to the class of the so called *openings by reconstruction*, where each connected component is either suppress or left unchanged. However, such openings can also be based on criteria other than set markers (*e.g.* area, diameter).
Conversely, the γ_s’s induced by connection C do **characterise** it:

- **Induced Connection**: let C be a sup-generating family in lattice \mathcal{L}. Class C defines a connection iff it coincides with invariant sets of a family $\{\gamma_s, s \in S\}$ of openings such that

 (iv) for all $s \in S$, we have $\gamma_s(s) = s$,

 (v) for all $f \in \mathcal{L}$, and all $r, s \in S$, the openings $\gamma_r(f)$ and $\gamma_s(f)$ are either identical or disjoint, i.e.

 \[\gamma_r(f) \land \gamma_s(f) \neq 0 \Rightarrow \gamma_r(f) = \gamma_s(f),\]

 (vi) for all $f \in \mathcal{L}$, and all $s \in S$, $s \not\equiv f \Rightarrow \gamma_s(f) = 0$

- **Optimal Segmentation**: the family of the maximal connected components $\leq f$, $f \in \mathcal{L}$, partitions f into elements defined by $\gamma_s(f)$, and one cannot segment f with **less** elements of C.
Properties of the Connections

• **Lattice of the Connections**: The set of the connections that contain the canonic sup-generating class S forms a complete lattice where

$$\inf \{C_i\} = \bigcap C_i \quad \text{et} \quad \sup\{C_i\} = C\bigcup C_i$$

• **Connected Dilations**: Let C be a connection and $S \subseteq C$ a sup-generating class. If an extensive dilation δ preserves connection on S, it preserves it also on C.

 – Ex: in $\mathcal{P}(E)$, if the (extensive) dilates of the points are connected, that of any connected component is connected too.

• **Corollary**: The erosion and the opening adjoint to δ treat the connected components of any $a \in \mathcal{L}$ independently of each other.
Firstly, the erosion $X \ominus B_\lambda$ suppresses the connected components of X that cannot contain a disc of radius λ; then the opening $\gamma^{\text{rec}}(X ; Y)$ of marker $Y = X \ominus B_\lambda$ «re-builds» all the others.

Application: Filtering by Erosion-Reconstruction

- **Initial image**
- **Eroded of a) by a disc**
- **Reconstruction of b) inside a)**
Comment: efficient algorithm, except for the particles that hit the edges of the field.
Definition:

- An operator \(\psi : \mathcal{L} \to \mathcal{L} \) is said to be **connected** when its restriction to \(\mathcal{D} \) is extensive. The most useful of such operations are those which, in addition, are **increasing** for \(\text{TE} \).

Properties when \(\phi = 0 \):

- All **binary** reconstruction increasing operations induce on \(\mathcal{L} \), via the cross sections, increasing connected operators on \(\mathcal{L} \).
- The properties to be strong filters, to constitute semi-groups, etc. are also transmitted to the connected operators induced on \(\mathcal{L} \).
- Note that a mapping may be anti-extensive on \(\mathcal{L}^E \), and extensive on \(\mathcal{D} \) (e.g. reconstruction openings). However, the reconstruction closings on \(\mathcal{L}^E \) are also closings on \(\mathcal{L} \).
An Example of a Pyramid of Connected A.S.F.'s

Flat zones connectivity, (i.e. $\varphi = 0$).
Each contour is preserved or suppressed, but never deformed: the initial partition increases under the successive filterings, which are a strong semi-group.
Second Generation Connection

We will now use a dilation δ to create a new connections C' from a first one C (of associated opening γ_x).

- **Inverse Images**: Let $\delta : \mathcal{L} \to \mathcal{L}$ be an extensive dilation that preserves connection C (i.e. $\delta(C) \subseteq C$). Then, the inverse image $C' = \delta^{-1}(C)$ of C is still a connection on \mathcal{L}, which is richer than C, i.e. $C' \supseteq C$.

- **Connected Opening**: If, in addition, \mathcal{L} is infinitely \lor-distributive, then the C-components of $\delta(a)$ are exactly the images of the C'-components of a. The opening ν_x of C' is given by

$$\nu_x(a) = \gamma_x \delta(a) \land a \quad \text{when } x \leq a ;$$
$$\nu_x(a) = 0 \quad \text{when not} .$$
Comment: One want to find the particles from more than 20 pixels apart. They are the only connected components to be identical in both C and C' connections, i.e. the particles whose dilates of size 10 miss the SKIZ of the initial image.
Goal: Extract the osteocytes present in a sequence of 60 sections from confocal microscopy

- Photographs a) and b): sections 15 and 35 respectively;
- Image c): supremum M of the 60 sections.
Application: 3-D Objects Extraction (II)

- **d)**: Threshold **c)** at level 60; **e)**: Connected opening of **d)**

- **f)**: Infinite geodesic dilation of the thresholded sequence (level 200) inside mask **e)** - perspective display -
Another example: Connections in a Time Sequence

Part of the sequence

Connections obtained by cube dilation of size 3 in Space⊗Time (in grey, the clusters)

Representation of the ping-pong ball in Space⊗Time
• **Definition:** E is a (discrete or continuous) metric space. Choose a positive function $\phi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be which is continuous at the origin. A function $g : E \rightarrow T$ is said to be equicontinuous of module ϕ when

$$|g(x) - g(y)| \leq \phi [d(x,y)] \quad (d = \text{distance in } E)$$

The class of these functions is denoted by G_ϕ

• **G_ϕ Lattices:** For each ϕ, G_ϕ turns out to be a totally distributive sub-lattice of T^E. All its elements are finite, except possibly its two extrema.

• **Convergence:** In each G_ϕ the convergences in Matheron sense and Hausdorff sense (when E is compact) coincide with the pointwise convergence, which, in addition, is uniform.

 (i.e. « $g_n \rightarrow g$ as $n \rightarrow \infty$ » just means « $g_n(x) \rightarrow g(x)$, $x \in E$ »).
Examples of Modules

• **Constant** Functions :
 \[\varphi = 0 ; \]

• Functions with a *bounded variation* \(k \) :
 \[\forall d : \varphi (d) \leq k \]

• **Lipschitz** Functions :
 \[\varphi (d) = k \cdot d \]

• **Geodesic Lipschitz** Functions :
 \[d \leq d_0 \Rightarrow \varphi (d) = k \cdot d \]
Properties of Equicontinuous Classes

• *Every* G_φ:
 - contains all constant functions;
 - is self-dual ($g \in G_\varphi \iff -g \in G_\varphi$);
 - is closed under addition by any constant.

• *Dilations:* G_φ is closed under the usual dilations and erosions (Minkowski, geodesic), and all these operations are continuous;

• *Filters:* hence G_φ is also closed under all derived filters (openings, closings, ASF, etc..), which turn out to be continuous operations;

• *Continuity* is enlarged into module preservation, a stronger notion, which is valid for both continuous and digital cases.
Weighted Sets

- **Definition:** Given a module φ, with each pair (A, g) of the product space $\mathcal{P}(E) \times G_\varphi$ associate the restriction g_A of $g \in G_\varphi$ to A, *i.e.* the function

$$
\begin{align*}
g_A(u) &= g(u) & \text{if } u \in A \\
g_A(u) &= 0 & \text{if } u \notin A.
\end{align*}
$$

By so doing, we replace the indicator function of set A by a (variable) weight g which belongs to G_φ. Hence g_A turns out to be a **weighted set**. As the pair (A, g) spans $\mathcal{P}(E) \times G_\varphi$, the g_A’s generate the set $\mathcal{P}_\varphi(E)$.

- **Lattice of the Weighted Sets:** Set $\mathcal{P}_\varphi(E)$ is a complete lattice for the usual ordering \leq; in this lattice,

 - the supremum $\bigcup (g_A)_i$ of a family $\{(g_A)_i, i \in I\}$ is the smaller element of G_φ which is larger than $\bigvee (g_A)_i$ on $\bigcup A_i$.
 - the infimum, simpler, is given by $\bigcap (g_A)_i = (\wedge g_i) \cap A_i$.
Examples of Weighted Sets

- **First example**: for $\varphi = 0$; the two sets are flat, but with different heights:
 - their φ-sup is their flat envelope (continuous lines),
 - their φ-inf is just the intersection of the two functions (dark zone)

- **Second example**: φ is a straight line:
Weighted Partitions

The weighted approach extends directly to partitions.

• **Definition**: A **weighted partition** \(x \rightarrow (g_D)_x \) is a mapping \(E \rightarrow P_\phi(E) \) such that

 (i) \(\forall x \in E, \quad x \in D(x) \)

 (ii) \(\forall (x, y) \in E, \text{ either } (g_D)_x = (g_D)_y \text{ or } (g_D)_x \land (g_D)_y = 0 \)

• **Sub-mappings**: Clearly, the sub-mappings

 - \(x \rightarrow D(x) \) is a usual partition, *i.e.* \(D \in D \)

 - \(x \rightarrow f(x) = \lor \{(g_D)_y, y \in E\}(x) \) is a usual function of \(T^E \), so that a weighted partition may be denoted by \(\Delta = (D, f) \).

• **Function Representation**: Every function \(f : E \rightarrow T \) can be represented, in different ways, as a \(\lor \{(g_D)_x, x \in E\} \). It suffices to partition \(f \) into zones on which \(f \) admits module \(\phi \) (for example, on which \(f \) is constant).
Theorem (J.Serra): Denote by \mathcal{L} the set of the weighted partitions. Then, the relation

$$\Delta \preceq \Delta' \iff \{ D \preceq D' \text{ in } \mathcal{D}, \text{ and } f \preceq f' \text{ in } T^E \}$$

defines an ordering on \mathcal{L} to which is associated a complete lattice.

Sup and Inf: In \mathcal{L}, the supremum $\bigvee \Delta_i$ of family $\{ \Delta_i \}$ admits $D = \bigvee D_i$ for partition. Each class $D(x)$ of D, has for weight g the smaller φ-continuous function larger than $\bigvee (g_D)_i$ on $D(x)$. The \mathcal{L} infimum $\bigwedge \Delta_i$ is given, at each point x, by $\bigwedge g_{D_i(x)}$ restricted to $\bigcap D_i(x)$.

Extrema: Δ_{max} is the single class partition, weighted by m, and Δ_{min} is the partition into all points of E, each of them being weighted by 0.
An Example of Flat Weighted Partition

- **Partitions**: for $\varphi = 0$, given function f:
 - when $f(x) \neq 0$, every subset of the flat zone of f that contains point x can serve as a $D(x)$, with weight $f(x)$;
 - when $f(x) = 0$, class $D(x)$ is reduced to $\{x\}$.

 (Note that f admits a largest flat partition Δ)

- **Ordering**: the two largest flat partition Δ and Δ' generated from the flat zones of f and f' are not comparable in \mathcal{L}, although $f > f'$ (but in \mathcal{TE} !)

Their inf $\Delta \land \Delta'$ is given by two flat sub-zones of f' and 0 elsewhere.

*Functions f and f'

Projection of their infimum partition $\Delta \land \Delta'$
Comment: Here the weights are taken constant in each flat zone of f and f', i.e. $\varphi = 0$. This generates two weighted partitions Δ and Δ'.

- **a**) Non comparable weighted partitions Δ and Δ'

- **b**) Function associated with supremum $\Delta \vee \Delta'$

- **c**) Function associated with infimum $\Delta \wedge \Delta'$
Cylinders in \mathcal{L}

- **Cylinders**: With any weighted set $g_A \in \mathcal{P}_\phi(E)$, it is always possible to associate a weighted partition Δ_A as follows:

 $x \rightarrow g_A$ if $x \in A$

 $x \rightarrow \{x\}$ if $x \notin A$.

 Δ_A is composed of class g_A plus a jumble of points, all being weighted by 0. Such a partition is called a cylinder, in \mathcal{L}, of base A.

- **Sup-generators**: Every weighted partition Δ turns out to be the \vee of all cylinders Δ_{Dx} associated with each class $(g_D)_x$ of Δ. Hence the class of the cylinders is sup-generating.

- **Closure under \vee**: The supremum $\Delta_A = \vee \Delta_{Ai}$ of family $\{\Delta_{Ai}\}$ of cylinders has for partition classes $\{\cup A_i\}$, plus all $\{x\} \subseteq [\cup A_i]^c$. Hence Δ_A is itself a cylinder.
Connections on Weighted Partitions

Suppose now that E is equipped with a connection C_0. If the bases C_i’s of cylinders Δ_{C_i} are connected and if $\cap C_i \neq \emptyset$, then $\gamma \Delta_{C_i}$ is a cylinder with a connected basis. Now, such cylinders are still sup-generating. Hence,

- **Connection on \mathcal{L}**: the cylinders Δ_C with a connected basis C in E, generate a connection C over \mathcal{L}.

- **Associated opening**: Given a weighted partition $\Delta = (D, f)$, the point opening $\gamma_x(\Delta)$ of connection C extracts the cylinder whose base is the class $D(x)$ of D covering point x, and weight the values of f inside $D(x)$.

In \mathcal{L}, the connected opening at point x is a cylinder.
Typology for the Connections on Functions

Module ϕ

1) $\phi = 0$
 - Constant functions
 - Flat zones

2) $\phi (d) \leq k$
 - Functions whose range of variation $= k$

3) $d \leq d_0 \Rightarrow \phi (d) = k \cdot d^\alpha$
 - Lipschitz geodesic functions
 - Zones in which the variation of f is $\leq k$, and jumps from one zone to another
 - Zones in which the variation of f is smooth, but not from one zone to another
An Example of Jump Connection in \mathcal{L}

a) Initial image: gaz burner

b) Jump of size 12: 783 tiles

c) Jump of size 24: 63 tiles

d) Number of tiles versus jump values
Other Example of Jump Connection in \mathcal{L}

a) Initial image: polished section of alumine grains

b) Jump connection of size 12:
 - in dark, the point connected components
 - in white, each particle is the base of a cylinder

c) Sketch of the set of the dark points of image b)
Comment: the two phases of the micrograph cannot be distinguished by means of jump connections.

a) Initial image: rock electron micrograph

b) Jump connection of size 15.

c) Jump connection of size 25.
An Example of Smooth Connection in \mathcal{L} (II)

Comment: The smooth connection differentiates correctly the two phases according to their roughnesses.

a) Initial image: rock electron micrograph.

b) Filtering of Image which yields a correct segmentation of a).

c) smooth connection of slope 6 (in dark, union of all point connected components).
Methodology: A jump connection of range 14 for the luminance yields 94 zones. The three color channels are averaged in each of the 94 regions.
References (I)

On binary Connections:

On Connections for Numerical Functions:
- J. Serra Connections for sets and Functions (to appear in Fundamenta Informaticae).

On examples:
On Connected Operators:

- **J. Serra, Ph. Salembier** Connected operators and pyramids. *In SPIE, Vol. 2030, morphological image processing*, San Diego, July 1993, pp. 65-76.